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Abstract

In this project, our aim is to present an approach
to the widespread problem of phishing. We pro-
posed a novel method for analyzing the com-
monality and readability of words to determine
the probability that the message is a phishing
attempt on a given text without compromising
privacy. Our approach creates a foundation for
further research and improvement.
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1 Introduction

The widespread use of online communication plat-
forms, such as emails and text messages, has cre-
ated opportunities for malicious actors to distribute
deceptive messages on a massive scale. Traditional
phishing detection models rely heavily on tech-
niques such as keyword detection, hyperlink veri-
fication, and machine learning classifiers such as
RoBERTa (Liu, 2019). However, these approaches
often overlook deeper lexical patterns inherent in
text-based phishing messages. Inspired by the the-
ory that phishing emails are crafted using simpler
language and commonly used words to appeal to a
broader audience, our research explores a novel ap-
proach based on text readability and word common-
ality analysis. By examining how easily a message
can be read and how frequently its words occur in
standard language use, we aim to create a more
comprehensive phishing detection system that ad-
dresses gaps in existing methods.

1.1 Research Problem and Objective
Phishing messages are intentionally crafted to de-
ceive users by blending into legitimate communi-
cation. Existing models excel at detecting obvi-
ous signs like suspicious links and known phish-
ing terms, but they might struggle when such ex-
plicit features are absent. Our project introduces

a new perspective by hypothesizing that fishing
messages tend to favor more common words and
easier-to-read sentences to maximize their potential
reach. We developed a detection framework that
combines two critical features: word commonality
based on Zipf scores and readability scores calcu-
lated through established text readability evaluation
formulas. By integrating these metrics into a uni-
fied scoring system, our goal is to detect phishing
messages that use this unique analysis vector.

1.2 Current Method and Limitations

Current phishing detection research has focused
extensively on machine learning models and struc-
tural analysis. Researchers such as Uddin and
Sarker (2024) explored transformer-based models,
while Çolhak et al. (2024) demonstrated that com-
bining AI-driven text and HTML structure analysis
improves detection. However, these models of-
ten rely solely on surface-level features, such as
explicit phishing keywords and malicious link de-
tection. This leaves a critical gap in detecting mes-
sages designed to appear genuine through subtle
text manipulation. Our research proposes a more
nuanced approach by incorporating lexical patterns,
emphasizing readability and word commonality as
previously unexplored dimensions in phishing de-
tection.

1.3 Impact and Relevance

Our work has significant implications for ad-
vancing phishing detection systems by offering
an innovative lexicographical analysis layer.
Cybersecurity professionals, developers of secure
communication systems, and email service
providers could integrate our proposed approach
into their existing frameworks. The potential to
detect phishing messages based on readability
and linguistic patterns adds a new dimension to
message screening processes. By focusing on
how messages are constructed rather than solely
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on what they contain, our research highlights
the untapped potential of text-based analysis in
strengthening online security and mitigating the
risks posed by phishing attacks while protecting
message confidentiality.

2 Approach

2.1 Procedures

An overview of our procedures is shown in the
Figure 1.

2.1.1 Initial Idea and Re-Approach
Our initial approach aimed to develop a contextual
understanding of phishing messages by leveraging
word relationship data from external APIs. The
idea was to extract contextual associations between
words, enabling a deeper semantic analysis of mes-
sage content. However, this approach faced signifi-
cant limitations due to insufficient relational data
provided by available APIs such as ConceptNet and
DBpedia. This restricted our ability to build a com-
prehensive knowledge-base model. Recognizing
these constraints, we revisited the core intent be-
hind phishing messages – to deceive as many users
as possible through easily digestible and widely
understood language (van der Laan, 2021). This re-
flection led us to formulate a new theory: phishing
messages are likely crafted using simpler sentence
structures and more commonly used words to max-

imize their reach. Shifting our focus we designed
the detection system that combines readability scor-
ing, which evaluates how easily a message can be
understood, with word commonality analysis based
on frequency metrics found in WordsAPI. This re-
approach enabled us to explore phishing detection
through a unique lexical lens, grounded in the fun-
damental principles of language accessibility and
deceptive communication tactics.

2.1.2 Commonality

Our initial hypothesis was that since phishing
emails cast a wide net to attract the largest number
of people possible, these types of messages would
select more common words that a large group users
could understand (van der Laan, 2021). To pro-
duce a commonality score, we extracted keywords
from the message using Python’s spaCy Library,
then used an API to WordsAPI, which is an on-
line knowledge base that holds information about
words, including but not limited to their definition,
examples, and frequency of use. We retrieved the
Zipf score of the words, which is a logarithmic
score for how often that word appears. A score of
one would mean the word appears once every hun-
dred million words, whereas a score of two would
be once every ten million words, and so on.

We averaged the Zipf scores of the extracted key-
words to produce an average score for the sentence,
assuming that if our hypothesis was true, we would

Figure 1: Procedure
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see the phishing messages have a higher average
Zipf score than the nonphishing messages.

2.1.3 Readability
We think that for a phishing attempt to be suc-
cessful, it needs to be simple and straightforward
enough to catch the receiver’s attention at the very
beginning. Therefore, we hypothesize that the read-
ability is negatively correlated with the probability
of a text being a phishing attempt.

To evaluate the readability of a given text, we
measured the complexity of the text by the follow-
ing 5 indexes:

1. Total words of the given text;

2. Average syllables per word of the given text;

3. Average characters per word used in the given
text;

4. Automated Readability Index (ARI) (Smith
and Senter, 1967);

5. Flesch-Kincaid grade (FKG) (Solnyshkina
et al., 2017).

The ARI and FKG index are similar indicators of
text complexity. The numbers indicate the school
level education that is required to understand the
text. For instance, an index of 11 suggests a high
school junior year level student’s readability level.

2.1.4 Commonality and Readability Scores
Integration

We conducted an exploratory evaluation by sys-
tematically testing various weight configurations
to understand their impact on our model’s perfor-
mance. Specifically, we iteratively adjusted the
weights with a 0.05 steps at each iteration for the
Commonality, ARI, and FKG scores (e.g., weight
for commonality = 0.05, weight for ARI = 0.05,
and weight for FKG = 1 − 0.05 − 0.05 = 0.9).
However, as we did not find any significant changes
in the overall performance of the model with differ-
ent weights. Therefore, we decided to implement a
most explainable model by evenly assign weights
to commonality and readability scores.

In the final model, we assigned a weight of 50%
to the commonality score, 25% to the ARI met-
ric, and 25% to the FKG metric. These weights
were selected based on their ability to maximize
the alignment of the model’s predictions with the
desired outcomes. Using these weights, we defined

a composite TrustME score, calculated as follows,
to predict the trustworthiness of a given text:

TrustME =0.5× Commonality

+ 0.25×ARI + 0.25× FKG

Figure 2: TrustME Confusion Matrix at 0.5 Threshold

2.1.5 Potential Integration of RoBERTa
Model

Our initial idea was to use a RoBERTa model (Liu,
2019) to do an initial sweep through the data to
have an initial classification on the data, then go
back through the classified phishing data and do a
content based analysis to focus on the false posi-
tives that the RoBERTa made more often than false
negatives. However, we thought that this would be
relying too much on an existing model and would
become an accessory function for existing mod-
els rather than a novel approach on how to detect
phishing messages, so we focused on developing
our own model that could tread a new path for the
detection of phishing messages without needing to
take in the actual content of a message that could
potentially be leaked and pose a security risk.

2.2 Challenges
2.2.1 Commonality
We ran into limitations with our API, as we were
only allotted twenty-five thousand API requests
per day on our current paid plan. This forced up
to both limit the sample size of the messages we
could use, and also limited the amount of keywords
we could request per message in order to fit the
limit of our current WordsAPI plan. Running our
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model multiple times while tweaking the code also
contributed heavily to our limit as well. Addition-
ally, the parsing of the message and extraction of
the keywords made it difficult for us to run a robust
sample size without our application timing out and
losing progress.

2.2.2 Readability
Considering that calculating readability of a given
text is relatively straightforward and simple with
the python package nltk, we did not anticipate to en-
counter any kind of challenges and difficulties dur-
ing the implementation and calculation procedure
itself. And we indeed got the readability scores
smoothly.

2.3 Novelty of approach
2.3.1 Commonality
Our method introduces a novel approach to detect-
ing phishing messages by leveraging Zipf’s Law to
analyze the linguistic simplicity of phishing mes-
sages. By extracting keywords and retrieving their
Zipf scores, we produce an efficient, simplistic,
and understandable metric for a message, rather
than computationally heavy methods like sentiment
analysis or semantic embedding. By using this lin-
guistic generalization, it could reveal potentially
unknown patterns about phishing messages that
can be explored further

2.3.2 Readability
Current language models, such as BERT (Devlin,
2018), RoBERTa (Liu, 2019), and Llama (Touvron
et al., 2023), focus more on catching phishing
attempts via semantic understanding. However,
we believe that there are other ways that phishing
texts share. Specifically, from a social engineering
perspective, those fraudulent attempts are filtering
at the same time as phishing. As they intend
to keep the text as simple as possible to target
those with lower awareness of fraudulent attempts.
Therefore, besides the semantic meaning of the
text itself, we would like to utilize the readability
scores of the text to see whether we can predict
whether a given text is a phishing attempt or not.

3 Experiment Results and Error Analysis

3.1 Experiment Results: Commonality and
Readability Scores Integration

The way we measured success was fairly simple:
whether our lexical analysis, combining common-

ality and readability scores together, correctly de-
termined whether the message was phishing or not
against the ground truth label of the message. We
wanted to answer whether the phishing messages
used more common language than non-phishing
messages and whether we can detect it.

However, contrary to our prediction, our model
was unable to reliably create a distinction in the
word choices and readability of the phishing mes-
sages versus the non-phishing messages. When
tested, we ran with a threshold of 0.5 since the
score was normalized on a scale of zero to one.
However, we leaned far more towards classifying
messages as non-phishing. When we lowered the
threshold down to around 0.33, we began to see the
classification be evenly split up between phishing
and non-phishing, but our accuracy decreased due
to this as well, since non-phishing messages began
to be classified as phishing.

Figure 3: TrustME Confusion Matrix at 0.33 Threshold

3.2 Error Analysis
3.2.1 Commonality Error Analysis
Initially, we ran the Zipf score with each keyword
extracted from the message. With the longer mes-
sages, we potentially ended up with dozens of key-
words we were sending through the API. We found
that the more keywords we used for the average
Zipf scores, the more the averages converged for all
messages and we were unable to have a true distinc-
tion between any samples. To address this problem,
we began only using the top n longest keywords
in an attempt to get the most unique keywords for
each message, and therefore to be able to distin-
guish the average Zipf scores more clearly. We had
initially started with thirty keywords, eventually
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reducing to twenty, ten, and then five keywords,
where we finally started to see a bit of divergence
within the average Zipf scores per message, even
if not within phishing/non-phishing messages. Ad-
ditionally, while running the API, if there were
words that were misspelled or not present within
the WordsAPI database, those words would not
return a Zipf score, which would count as a zero.
This would skew the score inversely to our hypoth-
esis, resulting in a non-phishing classification even
though misspelling are a core identifier of phish-
ing attempts. Unfortunately this was a factor we
could not account for with the use of the WordsAPI
database.

Figure 4: Normalized Zipf Score Distribution

3.2.2 Other Factors
There are potentially some minor issues with our
dataset. First, the dataset we used did not have
niche business topics that we imagined would have
the lower Zipf scores since they would be used,
since the data did not explicitly define where it was
gathered from.

Second, the dataset we used in this study does
not have the highly specific technical language
that we were looking for to determine the phish-
ing attempt. For instance, if one text mentions
that "please use xxx tool to send the money since
your account is locked" then this specific tool name
would be a red flag.

3.3 Potential Integration of RoBERTa

We first tried to fine-tune a RoBERTa model for
phishing text detection. Specifically, we fine-tuned
the RoBERTa model with the Phishing Dataset (eal-
varadob, 2024). This is a dataset containing URL,
SMS messages, Email messages, and HTML code.
However, since our study focuses on identifying
phishing texts, we only fine-tuned the RoBERTa
model with SMS and Email messages.

The training process is shown in Table 1. The
entire finetuning took over three epochs. As shown
in the table, the training loss decreased significantly
from epoch 1 to epoch 3, showing effective learning
of the model during training. However, the vali-
dation loss drops in epoch 2 but increases slightly
in epoch 3. This might indicate slight overfitting,
as the model performs well on the training data
but struggles slightly more on unseen validation
data in epoch 3. As for the accuracy, it shows an
upward trend, indicating improved classification
performance across epochs. In addition, the preci-
sion remained high across epochs, indicating that
the model performed consistently well. Lastly, the
recall rate improved significantly from Epoch 1 to
Epoch 2 and decreased slightly in Epoch 3. There-
fore, we decided to stop the fine-tuning process at
step 3 and use the model from then on.

Epoch Training Loss Validation Loss Accuracy Precision Recall
1 0.129 0.112 0.973 0.994 0.935
2 0.040 0.053 0.989 0.982 0.990
3 0.011 0.066 0.990 0.991 0.983

Table 1: Process of Fine-tuning RoBERTa Model

To have a better understanding of the perfor-
mance of your fine-tuned RoBERTa model, we
asked ChatGPT to generate a new dataset with both
phishing and nonphishing texts. And the perfor-
mance is shown in Figure 5.

Figure 5: Confusion Matrix of Fine-tuned RoBERTa
Model with GPT Generated Dataset

As shown in Figure 5, the performance of the
fine-tuned RoBERTa model generally works well.
However, we have slightly more false positive
cases, where some nonphishing texts were iden-
tified as phishing texts.

To improve the performance, we considered
combining the confidence scores generated by the
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fine-tuned RoBERTa model together with the lex-
ical scores generated from the previous steps. To
determine the weights of different weights, we
applied a logistic regression. Specifically, we as-
signed weights as follows:

• Coefficient: -0.567881

• RoBERTa Confidence Score: 2.993977

• Average Syllables Per Word: 0.504654

• ARI: 0.178134

• Total Words: 0.104803

• Commonality Score: 0.072311

• Adjusted Score: -0.072311

• Average Zipf Score: -0.166475

• Average Characters Per Word: -0.219793

• FKG: -0.239904

After adding all the scores based on their
weights, we applied the initial score with the follow-
ing formula to make a prediction with a threshold
at 0.999:

P (Phishing) =
1

1 + e−InitialScore

However, the performance was not as expected.
Among the 100 examples we used, only 52 out of
100 were successfully identified by this method.

4 Discussions and Conclusion

4.1 Replicability

Our research framework is designed with replicabil-
ity in mind, leveraging widely available tools, pub-
licly accessible datasets and APIs. The model’s im-
plementation relies on standard machine learning
libraries, including Hugging Face’s Transformers
for RoBERTa fine-tuning and common readability
scoring algorithms and word frequency retrieval.
Our methodology is clearly defined, with step-by-
step processes for data preparation, feature extrac-
tion, and score aggregation. Future researchers
can reproduce our results by following these proce-
dures, adjusting parameters, or applying the model
to new datasets and gain better scores.

4.2 Datasets

Our research utilized a dataset consisting of general
messages, covering a wide range of topics typically
encountered in everyday online communication.
While this dataset provided valuable insights into
common linguistic patterns in phishing and benign
messages, it limited our ability to explore more spe-
cialized phishing tactics aimed at specific industries
or professional contexts. A more targeted dataset
focusing on business-related messages, such as cor-
porate emails or financial correspondence, could
enhance the applicability of our model by exposing
it to niche vocabulary and context-specific phishing
strategies. Future research could benefit from de-
veloping or sourcing such domain-specific datasets,
enabling a deeper understanding of how lexical fea-
tures manifest in professionally oriented phishing
attempts. This adaptation could inspire new lines
of research in business email compromise (BEC)
detection and tailored phishing prevention systems.

4.3 Ethics

While our model processes textual data by extract-
ing keywords and calculating scores based on word
commonality and readability formulas, it inherently
carries a potential privacy risk. Analyzing message
content could, in theory, expose sensitive informa-
tion if messages were stored or transmitted inse-
curely. However, our approach minimizes this risk
by focusing solely on lexical features rather than
the message’s actual content. The model processes
the text locally, extracts relevant scores, and dis-
cards the original message, ensuring that sensitive
information is neither retained nor shared. Since
we operate on abstracted numerical representations
rather than raw text, the possibility of data leakage
is significantly reduced. To further mitigate privacy
concerns, future implementations could enhance
security by applying encryption protocols, process-
ing messages entirely on-device, or anonymizing
data before analysis. This ensures that our research
remains both technically sound and ethically re-
sponsible.

4.4 Conclusion

While our model offers a novel approach to phish-
ing detection through lexical analysis, it faces cer-
tain limitations due to the evolving nature of phish-
ing messages. Historically, phishing emails were
often poorly constructed, featuring grammatical
errors, awkward phrasing, and low lexical sophis-
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tication—traits our model was designed to detect
through readability and word commonality scoring.
However, the rise of advanced LLMs capable of
generating highly coherent and convincing phish-
ing messages challenges the effectiveness of our
approach. As these models become more acces-
sible, phishing attempts may increasingly exhibit
professional writing quality, making lexical anal-
ysis alone insufficient. To address this, future re-
search could integrate AI-generated text checkers
into our TrustME scoring system, adding an adap-
tive layer that assesses the likelihood of a message
being machine-generated. This would strengthen
the detection process by balancing lexical evalua-
tion with modern AI-driven checks, ensuring that
the scoring system remains robust against more
sophisticated phishing tactics.
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